image

The Multimodal Autonomous Drone (S-MAD) is a fixed-wing drone that has a few bird-like tricks up its sleeve. You can, for example, fly it like a glider through a room or open space but when it approaches a flat surface the drone quickly changes configuration and lands flat with its little spiky teeth digging in to keep it from falling. In short, this is one of the scariest robotic behaviors I’ve seen since Big Dog galumphed its way into our nightmares.

The S-MAD uses something called microspines[1] to attach itself to rough surfaces. The spines are essentially hardened steel spikes that grip small bumps in a surface from two directions – “the opposed-grip strategy for microspines is just like a human hand grasping a bottle of water, except that while humans require some macroscopic curvature to get our fingers around both sides of an object, the microspines can go deep into the micro-features of a rough surface and latch on those tiny bumps and pits” said researcher Hao Jiang[2] of Stanford. These spines are already being used on multi-rotor drones but this is the first time they’ve been used on a fixed-wing device. The plane now lands on surfaces 100 percent of the time, an impressive feat for such a drone.

With these microspines the plan can flatten itself against a wall and perch there, gathering data and scanning the environment. When it’s ready to move on, it releases the spines and flies off into the wild blue. Researchers Dino Mehanovic, John Bass, Thomas Courteau, David Rancourt, and Alexis Lussier Desbiens from the University of Sherbrooke decided to connect these spines with a fixed-wing drone and had to create a new way to essentially stop the plane in...

Read more from our friends at TechCrunch

The Fed can create new money out of thin air and spend it on whatever financial assets it wants, whenever it wants — giving that money to whichever banks it wants

Read more from our friends at Gold & Silver